Tiếp phần bài tập:
6. Cho mặt cầu S(O ; r) tiếp xúc với mặt phẳng (P) tại I. Gọi M là một điểm nằm trên mặt cầu nhưng không phải là điểm đối xứng với I qua tâm O. Từ M ta kẻ trên mặt cầu hai tiếp tuyến của mặt cầu cắt (P) tại A và B. Chứng minh rằng
7. Cho hình hộp chữ nhật ABCD.A’B’C’D có AA’ = a, AB = b, AD = c.
a) Hãy xác định tâm và bán kính của mặt cầu đi qua 8 đỉnh của hình hộp đó.
b) Tính bán kính của đường tròn là giao tuyến của mặt phẳng (ABCD) với mặt cầu trên. 8. Chứng minh rằng nếu có một mặt cầu tiếp xúc với 6 cạnh của một hình tứ diện thì tổng độ dài của các cặp cạnh đối diện của tứ diện bằng nhau.
9. Cho một điểm A cố định và một đường thẳng a cố định không đi qua A. Gọi O là một điểm thay đổi trên a. Chứng minh rằng các mặt cầu tâm O bán kính r = OA luôn luôn đi qua một đường tròn cố định.
10. Cho hình chóp S.ABC có bốn đỉnh đều nằm trên một mặt cầu, SA = a, SB = b, SC = c và ba cạnh SA, SB, SC đôi một vuông góc. Tính diện tích mặt cầu và thể tích khối cầu được tạo nên bởi mặt cầu đó.
Tiếp phần bài tập:
6. Cho mặt cầu S(O ; r) tiếp xúc với mặt phẳng (P) tại I. Gọi M là một điểm nằm trên mặt cầu nhưng không phải là điểm đối xứng với I qua tâm O. Từ M ta kẻ trên mặt cầu hai tiếp tuyến của mặt cầu cắt (P) tại A và B. Chứng minh rằng
7. Cho hình hộp chữ nhật ABCD.A’B’C’D có AA’ = a, AB = b, AD = c.
a) Hãy xác định tâm và bán kính của mặt cầu đi qua 8 đỉnh của hình hộp đó.
b) Tính bán kính của đường tròn là giao tuyến của mặt phẳng (ABCD) với mặt cầu trên. 8. Chứng minh rằng nếu có một mặt cầu tiếp xúc với 6 cạnh của một hình tứ diện thì tổng độ dài của các cặp cạnh đối diện của tứ diện bằng nhau.
9. Cho một điểm A cố định và một đường thẳng a cố định không đi qua A. Gọi O là một điểm thay đổi trên a. Chứng minh rằng các mặt cầu tâm O bán kính r = OA luôn luôn đi qua một đường tròn cố định.
10. Cho hình chóp S.ABC có bốn đỉnh đều nằm trên một mặt cầu, SA = a, SB = b, SC = c và ba cạnh SA, SB, SC đôi một vuông góc. Tính diện tích mặt cầu và thể tích khối cầu được tạo nên bởi mặt cầu đó.