Bài toán gốc Nguyên hàm của hàm số $y=2^x$ là A. $displaystyleint 2^xmathrm{d}x=2^x+C$ B. $displaystyleint 2^xmathrm{d}x=dfrac{2^x}{ln 2}+C$ C. $displaystyleint 2^xmathrm{d}x=ln 2cdot 2^x+C$ D. $displaystyleint 2^xmathrm{d}x=dfrac{2^x}{x+1}+C$ Lời giải: Ta có $displaystyleint 2^xmathrm{d}x=dfrac{2^x}{ln 2}+C$. Phân tích và Phương pháp giải Dạng bài toán yêu cầu áp dụng trực tiếp các công thức cơ bản trong hệ tọa […]